section maps&systems&models    HOME
please also visit:  
TOPOGRAMM 1986-89 und Bild der Wissenschaften 1989,  Credibility of Ecology 1988 Global Change 1990,  Harmonization 1990,  Access& Assimilation 1991,  Spatial vs. Spatial  2001,  Raum&Leere UN Year of the Mountains (synopsis 1986-2003) 2003


BAND 10, 277-290 BENSHEIM 1989


A New Geo-Biosphere Data Acquisition, Analysis, Documentation, and Processing Concept



This paper discusses requirements for processing changing geo- and biosphere data to monitor and counter natural and man-made impacts.

The project B10MONITORING was selected to test the continuous information flow between data acquisition, documentation, subject specific analysis, mapping, and storage. Another important criteria for biomonitoring applications is the transfer to digital geo-scientific maps.

Besides the demand of object data, including shapes and neighborhoods, high spatial and temporal resolution is required to establish a framework comprising of original data. From a synoptical photo-optic recording selected task-specific aspects can be retrieved on demand. This bottom-up approach allows to check and orientate other information sources.

TOPOGRAMM promises a strategy to manage data volumes when creating high fidelity representations and some ergonomic and implementation concepts not tested before for ecological tasks. The use of available expertise and conventional procedures within photogrammetric models seemed promising after testing the accuracy possible with airborne-close-range sensing. Results can be reproduced and objectivated by interdisciplinary review and supplemented by further intelligence.

Key elements are the possibility to "revisit" scenes at any time, to select perspectives and to approach objects individually (task and demand specific and with no disturbance in the field).

Data-association and overlaying techniques help to sort and structure information. Combined aspects may be used to test the understanding of processes resulting in better predictions.

Documents for regional ecological projects are nearly non-existent. Combining available expertise and enhancing human visual and cognitive powers with automated information processing will create a new quality of ecological information and might help to bridge scales, times, and subjects.


Objective and precise synopsis of ecological dynamics

The Fields of Application

  • geoscience mapping and research
  • e.g. soil erosion protection, degradation and landscape
  • evolution studies, glacier surveys, avalanche protection
  • forest culture and inventory mapping
  • agriculture, e.g. land cover monitoring of pests
  • or renewable natural resources....
  • exploration and resource management
  • disaster control
  • taxation and insurance
  • infrastructure-, town- and regional-planning
  • civil engineering
  • geosphere monitoring and environmental impact studies

  • ecology and biosphere reserve management


Dieser Artikel beschreibt einen Projektansatz, der hohe Anforderungen an die Datenerfassung und -verarbeitung veränderlicher räumlicher, bio-geographischer Daten stellt.

Rechnerunterstützung ist notwendig, um die Vielfalt der Informationen handhaben und komplexe Monitoringaufgaben planen, durchführen und die Ergebnisse quantifizieren zu können. Zudem ist damit eine spätere Übertragung in digitale Grundkarten möglich.

Das Projekt BIOMONITORING wurde eingeleitet, um die Machbarkeit und Leistungsfähigkeit des Verfahrens projektnah zu prüfen.

Eine genaue Abbildung wählbarer Aspekte und der Gestalt der Objekte soll eine bessere Vergleichbarkeit und Vorhersage erlauben.

Das Verfahren speichert gemessene und durch Formerkennung identifizierte Daten in ein räumliches Bezugssystern mit Zeitreferenz. Objekt- und Nachbarschaftsbezüge können so aufgabenbezogen jederzeit be- und nachgearbeitet werden und stehen archiviert ständig für eine Auswertung unter anderen Gesichtspunkten zur Verfügung.

Die Erfassung des räumlichen Bezugssysterns erfolgt auf einern detailgetreuen, hochauflösenden, photooptischen Datenträger. Reproduzierbarkeit und Objektivität sind dadurch gewährleistet, daß das raum/zeitbezogene Informationssystem die visuellen und kognitiven Fähigkeiten des Experten zur Auswertung und Interpretation voraussetzt.

Uberlagerungs- und Zuordnungstechniken, verbunden mit problembezogenen Erhebungen, sorgen für Transparenz und Übersichtlichkeit und machen unvergleichbare Mehrfacherhebungen vermeidbar.

Datenintegrität, Verläßlichkeit und Übertragbarkeit sind bei diesem Verfahren in hohem Maße gewährleistet.

Die ökologischen Problerne unserer Zeit können sich als existentielle Herausforderung erweisen. Sie sind nur interdisziplinär lösbar. Für ein Zusammenwirken menschlicher Fähigkeiten und raumbezogener Expertise mit modernen Informationsverarbeitungsverfahren finden sich derzeit kaum Alternativen.

Key words:

Biomonitoring, renaturation, ecology, visualization, expertise, large scale, meso scale, stereo-model, close-range sensing, Niedersachsen, information system, environment, survey

List of Contents

1 . Introduction,   2. Surveys and Information Concepts  2.1 Scales and Devices  2.2 The TOPOGRAMM Chain of Methods

3. Biomonitoring for Renaturation  3.1 The Challenge of Ecology  4. Summary    5. References



The international awareness of ecological research and inherent limitations /1/ (see especially GE0JOURNAL Trilogy "Enhancing the Credibility of Ecology") and the interest in "Global Change" were reinforcing the described "Local Change" concepts.

The lack of data available to study landscape developments and missing ecological inventories pose severe limitations for BIONIONITORING projects. Results and effects need to be documented and studied to plan corrective measures. Rebuilding sustaining "natural" environments requires insights into terrain and milieu patterns, constraints and dynamics. A periodical monitoring of natural changes and man-made impacts is required.

A strategic and task-specific sampling, intelligent selection on demand, documentation, and retrieval concept is mandatory because periodic terrestrical mapping of the geo- and biosphere produces hitherto unknown information volumes.

The obtainable information validity, available within conventional coordinate frameworks, creates exchangable expertise and therefore objectivity (object related, inter-regional, intertemporal) /2/.

When exploring this "terra incognita" of morphological and ecological change it was obvious that conventional data acquisition methods, neither field survey nor remote sensing, provide the required precision, objectivity, and consistency.

Being aware of high fidelity stereo models and surveying applications /3a-d/, the promised spatial and temporal resolution of the TOPOGRAMM chain-of-methods was put to the test for environmental projects and integration into developing geo-scientific databases /4a-d/. Storing authorative data with engineering accuracy in one seamless database allows to drop out unwanted precision at any time; but it does not work the other way.

The logical idea of TOPOGRAMM to fly low over the ground using sophisticated metric cameras to monitor the surface and store high resolution stereo models proved workable. Technical problems like terrain- following and image astigmatism (navigation, motion compensation, orientation of micro-models and signatures) have been solved.

The first projects in alpine steep terrain proved the workability under service center conditions. But tests in the lowlands or wetlands were necessary to establish the possible accuracy-ranges in areas with low terrain dynamics. Results were by far sufficient for spatial location, and within the models measurements of species were possible to a detail far above requirements.

Action is always local, just as life and business; ecological problems are usually local problems.

Besides surveying of existing conditions and possible study of alternative designs in the planning phase the scientific aspect was decisive for project procurement.



2.1 Scales and Devices

Satellite imagery and conventional aerial survey map with global scales (macro-surveys). For detailed spatial mapping usually field investigations are executed (micro-surveys). The indispensable field survey contains deficiencies within its procedure. These are especially subjective interpretations and estimates as well as physical and seasonal limitations. Satellite imagery on the other hand provides surprising results when tapping various electromagnetic bands (for outstanding results in mesoscales see /5a+b/). Fitting well for global intelligence, recognition of objects and shapes is lagging behind. Major efforts are presently undertaken internationally to combine results from different scales (see /1.III/.

Meso-scale observations and airborne close-range sensing of the TOPOGRAMM system fill a gap and lead to economic ground research. The results form a large, objective, and reproducible information basis. This new quality of survey allows the integration of local and global research.

2.2 The TOPOGRAMM Chain of Methods

Optical close-range remote sensing is new in its capability to produce high spatial resolution inventories of the continental and coastal geo- and biosphere.

Backbone of the system is an airborne close-range sensing platform and photogrammetric evaluation and documentation concept available since 1986 and made public this year /6a + b/.

Undisturbed geo-biosphere data from a wide electromagnetic spectrum can be collected and oriented with the help of high fidelity stereo models. The system relies on reconnaissance cameras hitherto not available, which allow a bottom-up data approach.

Measurements instead of interpretations, whenever possible, and the use of advanced statistics /7a+b/ and geo-information processing /8a-d/ is another principle of the system. Dimensions, areas, or volumes should only be evaluated considering the original context.

Present procedures are handicapped by data handling and storage restrictions. TOPOGRAMM addresses these problems by task-specific acquisitions, visual discrimination, and signifying. The archived documents contain many other aspects and are available for further analysis.

The TOPOGRAMM approach consists of four basic elements:

1. Airborne sensor-platform (DO 228), incl. modifications to change flight characteristics, to secure constant low object distances (terrain- following navigation), forward-motion-compensation FMC and triggered metric' RMK, and reconnaissance cameras as well as sensors.

2. Specialized films and scanners. Preference of high resolution black & white films (beside color, false-color, and infrared). -3. Photogrammetric analytic plotting & video superimposition systems (ZEISS P-Series incl. VIDEOMAP) for digital superimposition and overlays. 4. Geographic Information and Drafting Systems (GIS), incl. sophisticated Digital Terrain Models (DTM), Image Processing Systems and databanks (SOL based).

 scan fig 

Fig.: Instruments and information flow of the TOPOGRAMM System

Additionally to conventional airborne metric camera coverage TOPOGRAMM makes use of a second run with high resolution metric reconnaissance cameras. Booth, pan, and zoom in one take allows the up- and down-scaling needed to explore space and structures.

Mapping of objects, incl. their milieu, is tedious and expensive. Review of one viewpoint and perspective in most cases is not enough to describe and identify objects.

Instead of one front- or top-view (birds-eye), TOPOGRAMM stores multiple stereo-pairs which can be combined to models at any time. Observation and measurements within a high fidelity model allow a multitude of investigations.

The possibility to assume familiar perspectives is an asset, but still field checks, incl. sampling of probes, must follow. Questions already prepared and location fixed in photomaps secure ground research efficiency.

The new objectivity and quality of data established by TOPOGRAMM derives from multiple re-views without local disturbance assuming various perspectives (see also Blackbox Nature /8b/.

Field- researchers, working additionally in odd seasons in the office, can callibrate and exchange experience.


1. Precision measurements by special airborne sensor platform

2. Selection of media- and task-specific approach

3. All imagery (photos) are stored in optical archives

4. Measurements, interpretation, and analysis within stereo models by expert

5. Attribution;1nd superimposition of data

6. Results reproducable at any time with negligable extra costs

7. Interdisciplinary exchange and callibration

8. Digital storage into Geo-Information Systems

9. Documentation support



Local and global effects have accumulative repercussions; resulting perturbations can not be traced by conventional approaches. Various cosms interlace or interlock /9a-d/ and findings like the selfcontaining "Waldtextur" (see /1/) descrl!,e phenomena with only temporal impacts to the "outside".

Addressing such episodic changes requires new tools and focus.

The BIOMONITORING project is making use of developments around dimensional mapping and object-oriented sampling and processing.

The study of local and regional causes and effects will influence the construction design phase. Engineering accuracy is needed for modeling scenarios and planning-

Object coding is another part of the project, because codes designed for small scale mapping (e.g. ATKIS) do contain large-scale objects and settings /10/.

The TOPOGRAMM system was selected because it promised an effective mapping of the project, which is the catchment area of the Bruchgraben river totalling more than 100 sqkm. Besides the topographic mapping the tender includes an elevation model as a basis for high water and flood horizon simulation. Another criteria was the data handling and storage concept which includes management and' reuse of morphologic-al and vegetation data. Established documents are designed not only to test the integration into digital geo-scientific databases, but also to provide data for design, construction, and accounting. To support sustainable measures the project- specifications required an identification of relevant topographical features, for example the layout of the old riverbed (interesting design criteria not documented elsewhere). Project results are displayed in the poster session at the 2nd International Congress on Geomorphology and Geoecology.

3.1 The Challenge of Ecology

Ecology must be considered a subject of unknown contents, shape, and limits. It covers the coexistence of matter and life-forms through time. Man, as part of these processes, was and is not able to establish the objectivity necessary and possible in other sciences because he is part of the object of research. The body of knowledge is so heterogenous that only defined aspects can be traced and portrayed with some validity. In short, one natural object must be pragmatically segmented into a limited number of portraits. This selection is arbitrary and will always be unsatisfying.

After segmenting areas of interest scientific tools and methods can help to bridge scales, times, and subjects. Results will provide new insights and increase expertise and intuition.

Local Change Assessment Helps to Bridge Scales and Times

In the literature we find many references explaining the paramount influence of bridging scales. "Scale is more than size, it is size with proportions and consequences" /11/, /1/

Micro and macro phenomena influence each other. Digital mapping is available to pan and zoom freely and to allow to share and compare insights of structures separated by orders of magnitude. This scaling of magnitudes has to be clearly separated from zooming and panning of maps. Roaming in stereo models and changing viewpoints and view distances when observing original settings is much closer to reality. Images hold much more information than a thematic geo-graphic representation /12/.

To understand phenomena in time it is of great importance to review the same setting under controlled conditions at various times. Besides international global change programms making use of remote sensing techniques, there are only a few research projects focussing on local and episodic changes with interdisciplinary impacts. Available reports cover problems in terminology and the impossibility of relating findings in space and time /13a-c/.

Evaluating landscape change by reviewing different terrestrical photos allows some insights /14/, but conditions, positions, and scales where not designed for such purposes.

TOPOGRAMM maps local micro-changes and monitors dramatic changes like land-slides in alpine regions providing overview, exact dimensions, and unknown, highly interesting perspectives within coordinate systems.

The diversity or changes in habitat are rarely studied empirically on a local or regional level so far.


Interdisciplinary Procedures - Bridging Subjects -

Subjects demand the conceptual understanding of a whole body of knowledge /9a/. Languages, terminology, and different methodologies create barriers hard to overcome. TOPOGRAMM tries to restrict itself to the establishment of objective facts which might help to identify governing principles. The conceptual restriction to "hard" facts and measurements, instead of interpretations, might be a slow but safe way to understand phenomena. Half truth and misinterpretations once entering the body of knowledge are difficult to identify and are hard to discover within digital "Expert and Expertise Systems" due to missing reasoning transparency. Visual perception, measurements, and differentiation might be one fruitful. approach to study and review real-world scenes and milieus.

Only the controlled review of documented terrain and vegetation data allows interdisciplinary approaches of a new quality and quantity. Observation and measurements allow the establishment of expertise pools which can be reviewed and discussed by colleagues, seniors, or third parties. Resulting change in nomenclature has impact on communication and understanding /15a/. Parallel observations are possible for training or checking different interpretations when stereo-models are used. The comparison of results allows statistical assessment and a definition of quality, validity, and variance.

Technological Impact

Cartography combines individual selections and great art. The portrayed data are normally not available. How maps communicate to various user categories and groups was empirically surveyed by /16/. Digital mapping will allow to retrieve the original data and assemble maps for the specific task or scope /17a+b/. The communication aspect of the above is relevant but seldom as clearly described as in /18a-d/.

The above challenges deserve to be addressed fast /19a-c/.



"Many new tools are now becoming available which enable geo-scientific researchers to put to the test their conceptual ideas on scaling and interrelationships" /1/. The TOPOGRAMM system was selected because it promised the integration of available expertise into various disciplines and administrative bodies /15a-c/, /6b/, contains a proprietary bottom-up approach, may be instrumental for giving regional evidence (Regionale Beweissicherungsverfahren), achieve consensus of priorities and monitor impacts /20/, and design of early warning systems /21/.

The TOPOGRAMM system enables politics and sciences for the first time to plot local and regional environmental risks and hazards fast and with the required precision. On this basis feasible and effective measures can be taken.

The critical point for environmental sciences is the variety and validity of information. 'Ve are drowned by information but are starving for knowledge" /22/. The original documents of TOPOGRAMM are films for large and small scale photogrammetric models, they are not paper-based. They are available on demand by any researcher or project member authorized and trained. The benefits of identification, measurements, and recognition are obvious. Spatial structures can only be portrayed in a spatial model.

Information processing, archiving and documentation concepts form an integral part of the TOPOGRAMM concept. For further information /23/.

Coverage for its own sake is impractical and a waste of resources. Measurements should be taken only task-specific, when a deficit of information is realized or decisions are pending and according to a well devised strategy /24/.

Relevant ecological phenomena should be observed with the best possible accuracy. Too much noise hides valuable details necessary to understand distribution patterns within fine mosaics and their internal dynamics. Only a broad spectrum of scales in space and time might provide important insights.

A dimensional framework for mental and spatial/temporal orientation can support research and exchange, execution and monitoring.

The review of terrain or vegetation features at any time, by any expert, and from variable viewpoints has also far reaching ergonomic implications /3c/. High fidelity presentations can be validated by multiple observations and measurements, reviewed by a senior, and put forward to other experts for their concern and to establish common interpretations or definitions.

The use of human capabilities to differentiate and high precision measurement devices increase recognition, cognitive reasoning, and evaluation powers and, additionally, secure transparency and context. The resulting reliability and objectivity form a new quality of survey.

Ecological fidelity and validity are needed for diagnosis a n d therapy.



/1/ CASTRI, DI, F.; HADLEY, M.: GEO-JOURNAL - TRILOGY : "Enhancing the Credibility of Ecology": Kluwer Academic Publishers, Dordrecht/Boston/London, 1. "Can research be made more Comparable and Predictive ?", Vol.11.4, 321-j38, 1985, Il. 1s Interdisciplinary Research for Land Use Planning Useful? Vol.13.4, 299-325, 1986, 111. 1nteracting Along and Across Hierarchical Scales", Vol.17.1, 5-35, 1988

/2/ POPPER, K.R.: Objektive Erkerintnis - Ein evolutionärer Entwurf, Hoffinann und Campe, Hamburg, 1972-1984

/3a/ BEERENWINKEL, R., BONJOUR, J.D., HERSCH, R.D., KOLBL, 0.: Real-Time Stereo Image Injection for, Photogrammetric Plotting, IAPRS, Vol.26, Part 4, pp.99-109, Edinburgh, 1986

/3b/ EBNER, H., REINHARDT, W., H6f3LER, R.: Generation, Management, and Utilization of High Fidelity Digital Terrain Models, Proc. IAPRS, Vol. 27, B11 Part III,pp. 556-566, Kyoto, 1988

/3c/ HOBBIE, D., RODENAUER, H.: The ZEISS PLANICOMP Family: A user oriented solution for practical requirements, pp. 134-142, BuL 3a/84, Wichmann Verlag, KarIsruhe, 1984

/3d/ UFFENKAMP, D.: Improvement of Digital Mapping with Graphics Image Superimposition, IAPRS, Vol.26. Part 3/2, pp. 665-671, Rovaniemi, 1986

/4a/ VINKEN, R.: Digital geoscientific maps: a priority program of the German Society for the Advancement of Scientific Research, Mathematical Geology 18, pp. 237-246, Hannover, 1986

/4b/ VINKEN, R.,(ORG.): Int. Colloquium DIGITAL MAPS IN GEOSCIENCES, COGEODATA - DFG Section of Second International Conference on Geomorphology and Geoecology, Wilrzburg, Sept 1989

/4c/ SCHMIDT-FALKENBERG, W Datenfluß und Geo-Information, In: GeoInformations-Systeme, Wichmann Verlag, Karlsruhe, 1988

/4d/ MOUNSEY H., TOMLINSON, R.: Building Databases for global science, Taylor & Francis, London * New York * Philadelphia, 1988

/5a/ NONN, H.,(EDS.): Teledetection des Milieux Naturels et urbines a Strasbourg, No. 27, Recherches Geographiques, Association Geographique d'Alsace, Strasbourg, 1987

/5b/ KENNEDY, P.: Monitoring the Vegetation of Tunisian Grazing Lands, In: Ambio - A Journal of the Human Environment, Vol. XVIII, No. 2, pp. 119-123, The Royal Swedish Academy of Sciences, Pergamon Press, Oxford, New York, 1989

/6a/ VIESER, H.: Urnweltschutz mit Adlerblick - Die fliegende Lupe, S.36-43, In: Bild der Wissenschaft -Juni Ausgabe, dva, Stuttgart, 1989

/6b/ BENKING, H.: Airborne Close-Range Sensing Yields Analysis of Local Ecological Changes, under Preparation, Proceedings ECO-INFOREMA, May 16-19, Bayreuth, 1989

/7a/ AKIN, 14.; SIEMES, W Praktische Geostatistik, Springer Verlag, Heldelberg, 1988

/7b/ SCHERELIS, G.: Aspekte der räumlichen Variabilität von Mangan- und Eisengehalten in einer Parabraunerde aus L68, In: GE0ÖKODYNAMIK Band 9, S. 63-84, Bensheim, 1988

/8a/ BURROUGH, P.A.: Principles of Geographic Information Systems for Land Resources Assessment, Oxford Science Publications, Clarendon Press, Oxford, Utrecht, 1986

/8b/ BENKING, H.: System-, Device-, and Standard Independent Vector and Rastergraphics, Proceedings SEAS-SHARE, IBM European User Conference, Vol.11, pp. 939-948, Edinburgh, 1987

/8c/ DANGERMOND, L: A review of digital data commonly available and some of the practical problems of entering them into a GIS, ESRI-paper, Redlands, 1987

/8d/ JERN, M., DAVIS, A.: Raising the Standards, In: IBM Computer Today 4,1987

/9a/ HOSTADTER, D.R.: Gödel, Escher, Bach - Ein Endlos Gepflochtenes Band, KlettCotta, 1986

/9b/ SCHUGART, H.H.: A theorie of forest dynamic. The ecological implications of succession models, Springer Verlag, Berlin, 1984

/9c/ ANDREA, B.: Agrargeographie, W. de Gruyter, Rom-New York, 1983

/9d/ CURRAN, P. (ED.), FOODY G.:, KONDRATYEV, K.Y. KOZOGEROV, V.V.; FEDSCHENKO, P.P.: Remote sensing of soils and vegetation, Taylor & Francis, London * New York * Philadelphia, 1989

/10/ SCHRODER, WULF, (VORSITZENDER), ET.AL.: Aratliches Topographisch Kartographisches Informationssystem (ATKIS), AdV, Landesvermessungsamt NIZW, Bonn, 1987

/11/ BUZACOTT, J.A.; CANTLEY, M.F.; GLAGOLEV, VX; TOMLINSON,R.C.(EDS.): Scale in production systems, Pergamon Press, Oxford, 1982

/12/ BENKING, H.: Möglichkeiten und Grenzen der Datenpräsentation durch Computergrafik im Umweltbereich, In: Jaeschke, A; Page, B. (ed.), Informatik Fachberichte Band 170, Informatik im Umweltschutz, 2. Symposium, Springer Verlag, KarIsruhe, 1988

/13a/ ELLENBERG, H.; MAYER, R.; SCHAUERMANN, J.: Ökosystemforschungs-Ergebnisse des Solling Projekts, Verlag Eugen Ulmer, Stuttgart, 1986

/13b/ BLUME, H.P., FRANZLE, 0.; HEYDEMANN,11.,KAPPEN,L., WIDMOSER, P.: Okosysternforschung im Bereich der Bornhöveder Seenkette - Interne Mitteilungen, Leitungsgremium des FE-Vorhabens, Kjel, 1988

/13c/ TEUTSCH, G, (POJECT COORDINATOR), ALLISON, B.E., EBERLE, S.H., KAHNT, G., KLOBUS, H., PLOEG V.D., R.R., REUTER, A.: The Environmental Research Field Site "Horkheimer Insel" - Research Programm, Instrumentation, and First Results, In Vorbereitung, IAHR Journal of Hydraulic Research, 1989

/14/ RINGLER, A.: Gefährdete Landschaft - Lebensräume auf der Roten Liste - Eine Dokumentation in Bildvergleichen, BLV, München, 1987

/15a/ LESSING, W NUMIS, Niedersächsisches Umweltinformationssystem, in Vorbereitung, 5.Symposium Informatik im Umweltschutz und in der Landwirtschaft, in Vorbereitung, Springer Verlag, KarIsruhe, 1989

/15b/ BRAEDT, L, FRANKENBERGER, L, KOCH, R., WORFL, P., SCHMIDT, A., ROTH, M, OTTMANN,E, DUI---INKRACK, M, HEUBLEIN, D., GIETL, G., HEISE, S., JUNGWIRTH, F.: Komponenten eines Umweltinformationssystems, Referate der 1. Sitzung der Arbeitsgruppe Umweltinformationssysteme, ARGE ALP - Arbeitsgemeinschaft der Alpenländer, Kommission 11, Raumordnung, Umweltschutz und Landwirtschaft, Bayrisches Staatsministerium für Landesentwicklung und Umweltfragen, Müinchen, 1988

/15c/ BRAEDT, J. ET.AL.: Geoinformationssysteme, ARGE ALP - Arbeitsgemeinschaft der Alpenländer, Kommission II, Raumordnung, Umweltschutz und Landwirtschaft, Bayrisches Staatsministerium für Landesentwicklung und Umweltfragen, Mfinchen, 1988

/16/ DYMON, U. L: The Communication Structure Surrounding The Groundwater Maps Within The USGS Hydrological Atlas Series, In: The American Cartographer, pp. 387-397.,Vol. 15.4, October 1988

/17a/ BOSWINKEL, J-A.: REGIS: Regional Geohydrological Information System, In: Memoires of the International Symposium on Hydrogeological Maps as Tools for Economic and Social Development, IAH, Heise Verlag, Hannover, 1989

/17b/ STRUCKMEYER, W.F.: Types and Uses of Hydrogeologic Maps, In: Memoires of the International Symposium on, Hydrogeological Maps as Tools for Economic and Social Development, IAH, Heise Verlag, Hannover, 1989

/18a/ WEIZSACKER, E.U.: Contagious Knowledge, In: Tord Garnelius, Progress in Science and its social conditions, pp. 171-182,Pergamon, New York, 1987

/18b/ WEIZSACKER, E.U.: Ganzeitlicher Umweltschutz - Eine Herausforderung far Politik und Informatik, Informatikanwendungen im Umweltbereich, Informatik Fachberichte 170, Springer Verlag, Heidelberg, 1987

/18c/ WEIZSACKER, C.F.: Die Einheit der Natur, S.352, Hanser, Mfinchen, 1971

/18d/ VERVEY, W.D. (CHAIRMAN): Proc. Int. Congress on "Nature Management and Sustainable Development, University of Groningen, Foundation for Nature Management and Sustainable Development, Groningen, 1988

/19a/ BURGHARDT, 0., DILLMANN, W., PFEIFFER, D., WITTMANN, 0.: "Macht euch die Erde untertan.. - aber ruiniert sic nicht!", Bundesanstalt für Geowissenschaften und Rohstoffe und den Geologischen Landesämtern in der Bundesrepublick Deutschland, Hannover, 1983

/19b/ ENGELHARDT, W.: Umweltschutz, Bayrischer Schulbuch-Verlag, Mfinchen, 1985

/19c/ VESTER, F.: Das Überlebensprogramm, verlegt bei Kindler, Mfinchen, 1972

/19d/ SCHUMACHER, E.F.: Small is beautiful, Blond and Briggs, London, 1973

/20/ CONVEY. G., SA.IISE, P., KNOWLAND, W.: Lake Buhi: Resolving Conflicts in a Philippine Development Project, In: Ambio - A Journal of the Human Environment, Vol. XVIII, No. 2, pp. 128-135, The Royal Swedish Academy of Sciences, Pergamon Press, Oxford, New York, 1989

/21/ STEFFEN, H., BENKING, H.: Geografische Informationssysteme für das Marketing -Reduzierung der Komplexität durch Strukturierung und Raum-Zeit Bezug; und Technisches Rahmenprogramm: Computer Graphics for the Processing, Analysis and Output of Corporate and Market Data, Proceedings WCGA - CAMP Conference, Berlin, 1985

/22/ NAISBITT, L: Megatrends - 10 Perspektiven die unser Leben verändern werden, Hestia, Bayreuth 1984, Heyne Sachbuch, Mfinchen, 1985

/23/ KAMPFFMEYER, U.; BENKING, H.: Die Gewinnung, Auswertung -und Archivierung verläßlicher Umweltinformationen am Beispiel von TOPOPGRAMM, in Vorbereitung, 5. Symposium Informatik im Umweltschutz und in der Landwirtschaft, Proc. Springer Verlag, Karlsruhe, 1989

/24/ HARTKAMP, H.: Nutzen und Mißbrauch analytischer Werte, Vortragsmanuskript,

TELI - AMSEL, Umweltanalytik, Technisch-Literarische Gesellschaft Fachjournalisten Seminar, Schloß Reisensburg, 1987

The authors:

Dipl.Ing. Heiner Benking, Consultant, Gerhart-Hauptmann-Str. 19, 2722 Visselhövede, FRG

Dr. Helmut Lessing, Niedersächsisches Urnweltministerium, Referat für Umweltinformationsmanagement u. Statistik, Archivstr. 2, 3000 Hannover, FRG


S. SEUFFERT, 0. Editorial: Geomorphology & Geoecology"   pp. 1

NEUMEISTER, H Geoökodynamik - Okogeomorphologie - Geoökologie pp. 103

CARL, Th. & Geoecological Processes on Abandoned Vine- pp. 125

RICHTER, M. Terraces in the Cinque Terre

TRICART, J. L. F. Earth Natural System - A Contribution to the Geosphere-Biosphere Program  pp. 159

WIRTHMANN, A. Geomorphology and Geoecology in the Humid pp. 177

& LANGE U. Tropics

BLOMEL, W.-I). Geoccological Aspects of Maritime-Climatic and 201

& EITEL, B. Continental Periglacial Regions in Antarctica

KELLETAT,13. Biosphere and Man as Agents in Coastal Geomorphology and Ecology pp. 215

ABELE, G. Hygrisches Klima und Talbildung auf der Westflanke der zentralen Anden pp. 253

BENKING, H. &  LESSING, H.   Large Scale Biomonitoring for Renaturation   pp. 277

Editorial: Geomorphology & Geoecology,
Prof. Dr. Otmar Seuffert Geographisches Institut der TH Darmstadt in Verbindung mit dem Verein für Erdkunde zu Darmstadt e.V.

back section maps&systems&models     Education     Global Change     "ISSS"       HOME